Comparative Study of Particle Swarm Optimization based Unsupervised Clustering Techniques

نویسندگان

  • Harish Kundra
  • Jagdeep Kaur
چکیده

In order to overcome the shortcomings of traditional clustering algorithms such as local optima and sensitivity to initialization, a new Optimization technique, Particle Swarm Optimization is used in association with Unsupervised Clustering techniques in this paper. This new algorithm uses the capacity of global search in PSO algorithm and solves the problems associated with traditional clustering techniques. This merge avoids the local optima problem and increases the convergence speed. Parameters, time, distance and mean, are used to compare PSO based Fuzzy C-Means, PSO based Gustafson’s-Kessel, PSO based Fuzzy K-Means with extragrades and PSO based K-Means are suitably plotted. Thus, Performance evaluation of Particle Swarm Optimization based Clustering techniques is achieved. Results of this PSO based clustering algorithm is used for remote image classification. Finally, accuracy of this image is computed along with its Kappa Coefficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Hard and Soft Clustering Using Swarm Optimization

Bijayalaxmi Panda, Soumya Sahoo, Sovan Kumar Patnaik Abstract— Cluster analysis is one of the major techniques in pattern recognition, which is basically considered as one of the unsupervised learning technique. We can apply clustering techniques in various areas like clustering medicine, business, engineering systems and image processing, etc.,The traditional hard clustering methods restrict t...

متن کامل

Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification

A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clu...

متن کامل

Clustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers

In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...

متن کامل

A Study of Bio-inspired Algorithm to Data Clustering using Different Distance Measures

Data mining is the process of extracting previously unknown and valid information from large databases. Clustering is an important data analysis and data mining method. It is the unsupervised classification of objects into clusters such that the objects from same cluster are similar and objects from different clusters are dissimilar. Data clustering is a difficult unsupervised learning problem ...

متن کامل

A Novel Data Clustering Algorithm based on Modified Adaptive Particle Swarm Optimization

Fuzzy clustering is a popular unsupervised learning method used in cluster analysis which allows a point in large data sets belongs to two or more clusters. Prior work suggests that Particle Swarm Optimization based approach could be a powerful tool for solving clustering problems. In this paper, we propose a data clustering algorithm based on modified adaptive particle swarm optimization. We c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009